
International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

Volume 46, Issue 01, Quarter 04 (2017)

An Indexed, Referred and Impact Factor Journal

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

19

Formal Specification Language

Amal A. Mirghani1, Nahid A. Ali2 and Abdelrasoul Y. Ibrahim3

1Faculty of Computer Science and Information Technology,

Sudan University of Science and Technology

Khartoum, Sudan

aamy_22@hotmail.com

2Faculty of Computer Science and Information Technology,

Sudan University of Science and Technology

Khartoum, Sudan

nahidahmedali@hotmail.com

3Faculty of Computer Science and Information Technology,

Sudan University of Science and Technology

Khartoum, Sudan

abdosh67@hotmail.com

Publishing Date: December 20, 2017

Abstract
The specifications studied so far are adequate for

specifying programs that take an input and map it onto

an output. However, they inadequate to represent

programs whose response depends not only on their

input, but on their internal state. So for specifications

should have two key attributes: formality and

abstraction. Axiomatic representation represents the

relation of a specification by means of an inductive

notation to achieve simplicity, formality, and

abstraction. This notation includes Axioms and Rules.

This paper represents Alneelain specification language

that checks the syntax of Abstract Data Types

specification based on Axiomatic representation.

Keywords: Alneelain Specification Language,

Axiomatic Specification, Abstract Data Types.

1. Introduction

“The specification of a software product is a

description of the functional requirements that

the product must satisfy”. The word

Specification refers to both a process and a

product. As a product, the specification plays

two key roles: first, specification is the contract

that binds the user requirements and the

designer. Second, it is the primary working

document for the designer. As a process, the

specification takes place in two steps: the

specification generation step, when the

specification is progressively constructed from

the user requirements; the specification

validation step, when the specification is

matched against redundant requirements data

elicited from the user [1]. Whereas specifications

studied so far are adequate for specifying

programs that take an input and map it onto an

output, they are inadequate to represent programs

whose response depends not only on their input,

but on their internal state; the subject of this

section is to explore ways to specify such

systems.

This paper will discuss how to build Alneelain

compiler which checks the syntax of Abstract

Data Types ADT Specification. A Compiler “is a

program that can read a program in one language

(the source language) and translate it into an

equivalent program in another language (the

target language)” [2] [3]. Compiler important

role is to report any errors in the source program

that it detects during the translation process [3].

This work is part of a global project, where my

colleague Abdelrasoul Yahia works on

specifications generation and validation, and my

colleague Nahid Ahmed works on specification

verification and my work is on specification

testing, and can be used as an educational tool in

an integrated programming environment to teach

students how to define and validate a formal

specification, verify and test them against the

specifications.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

Volume 46, Issue 01, Quarter 04 (2017)

An Indexed, Referred and Impact Factor Journal

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

20

2. Checking Alneelain specification

language

Alneelain is Specification Language that

represents the relation of a specification by

means of an inductive notation, with induction

on the structure of the input history. Figure ‎1

blew illustrates the steps of checking Alneelain

Specification Language, for abstract data types

and will take stack as example.

Figure 1: Checking Alneelain specification

language

2.1 Defining ADT’s Requirements

A stack is a data type that is used to store items

(through operation push()) and to remove them

in reverse order (through operation pop()). Then

returns the most recently stored item that has not

been removed (through operation top()),

operation size() returns the number of stored

items and operation empty() tells whether the

stack has any items stored; and finally operation

init() reinitializes the stack to an initial situation

[4] [5].

The specification of abstract data types

represented by means of three attributes:

• An input space, say X that represents

the symbols that may be fed into the ADT as

inputs. For a stack ADT, for example, these

would be:

X = {init, pop, top, size, empty}  {push}

 itemtype.

From this set, we build set H of sequences

of elements of X, and we refer to H as the set of

input histories, or input sequences.

• An output space, which represents the

set of symbols that the ADT returns on output.

For the stack ADT, this would be:

Y = itemtype  integer  Boolean 

{error}.

• A relation (often a function) from H to

Y, which associates an output for each input

sequence. For the stack ADT, this relation

would include pairs such as:

Stack(init.push(a).push(b).top.push(c).pop.top)

= b

Stack(init.pop.push(a).pop.push(a).pop.push(a)

.size) = 1

2.2 Specifying ADT’s using Axiomatic

Specification

In order to represent specifications in closed

form, we use an axiomatic notation that includes:

 Axioms, which represent the behavior of the

ADT for elementary input sequences. As an

example, consider the following axiom for

the stack specification:

1. Top axioms.

a. stack(init.top) = error.

b. stack(init.h.push(a).top) = a.

2. Size axiom.

a. stack(init.size) = 0.

3. Empty axioms.

a. stack(init.empty)=true.

b. stack(init.push(a).empty)=false.

 Rules, which define the behavior of the ADT

for complex input sequences as a function of

their behavior for simpler input sequences.

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

Volume 46, Issue 01, Quarter 04 (2017)

An Indexed, Referred and Impact Factor Journal

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

21

As an example, consider the following rule

for the stack specification:

1. Init rule:

stack(h.init.h’)=stack(init.h’).

Init reinitializes the stack state: even if

there a history h prior to init or not.

2. Init Pop rule:

stack(init.pop.h) = stack(init.h).

Pop has no impact on an empty stack.

3. Push pop rule:

stack(init.h.push(a).pop.h+) =

stack(init.h.h+).

A pop operation cancels the push before it.

4. Size rule:

stack(init.h.push(a).size)=1+stack(init.h.size)

Push operation raises the size of the stack by

1 because the stack size is not restricted.

5. Empty rules

a. stack(init.h.push(a).h’.empty)═>

stack(init.h.h’.empty).

If, despite having operation push(a) in

its history, the stack is empty, then a

fortiori it would empty without push(a).

b. stack(init.h.empty)═>

stack(init.h.pop.empty).

If the stack is empty, then a fortiori it

would be empty if an extra pop

operation was performed in its past

history.

6. V-operation rules

a. stack(init.h.top.h+)=stack(init.h.h+)

b. stack(init.h.size.h+)=stack(init.h.

h+)

c. stack(init.h.empty.h+)=

stack(init.h.h+).

V-operations have no impact on the

future behavior of the stack.

Where h is an arbitrary input history and h+ is an

arbitrary non null input history.

2.3 Validating ADT’s Specification

It is important to validate specifications for

completeness and minimality, and to invest the

necessary resources to this effect before

proceeding with subsequent phases of the

software lifecycle. The only way to ensure a

measure of confidence in the validation of the

specification is to separate the team that

generates the specification from the team that

validates it. To this effect, the study proposes the

following two-team, two-phase approach [4] [6]

as in table 1 blew

Table 1: Validation Approach

 Activity

Phase

Specification

Generation

Specification

Validation

Specification

Generation

Generating the

Specification

from sources of

requirements

Generating

validation data

from the same

sources of

requirements

Specification

Validation

Updating the

specification

according to

feedback from

the validation

team

Testing the

specification

against the

validation data

generated

above

For the sake of simplicity, this work focuses

solely on completeness. And while writing these

specifications, an independent verification and

validation team is generating formulas of the

form

stack(h) = y

For different values of h and y, on the grounds

that whatever the team write in our specification

should logically imply these statements. Then

the validation step consists in checking that the

proposed formulas can be inferred from the

axioms and rules of our specification. If they do,

then the researchers can conclude that our

specification is complete with respect to the

proposed formulas; if not, then he/she needs to

check with the verification and validation team

to see whether our specification our specification

is incomplete, or perhaps the validation data is

erroneous.

For the sake of illustration, the researchers check

whether our specification is valid with respect to

the formulas written in section 2.1 as sample

input /output pairs of our stack specification.

 V1: stack(pop.init.top.pop.push(a).size.

push(b).top.pop.push(c).top.pop.size.top)=a

 V2: stack(push(2).init.init.pop.push(3).top

.size.push(2).push(5).top.pop.push(3).

size)=3

For V1, one find:

= {by virtue of the init rule}

stack(init.top.pop.push(a).size.push(b).top.pop.p

ush(c).top.pop.size.top)

= {by virtue of the V-op rules}

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

Volume 46, Issue 01, Quarter 04 (2017)

An Indexed, Referred and Impact Factor Journal

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

22

stack(init.pop.push(a).push(b).pop.push(c).pop.t

op)

= {by virtue of the push-pop rule, applied twice}

stack(init.pop.push(a).top)

= {by virtue of the second top axiom, with h = <

pop >}

= a

For V2, one find:

= {by virtue of the init rule}

stack(init.pop.push(3).top.size.push(2).push(5).to

p.pop.push(3).size)

= {by virtue of the V-op rules}

stack(init.pop.push(3).push(2).push(5).

pop.push(3).size)

= {by virtue of the push-pop rule}

stack(init.pop.push(3).push(2). push(3).size)

= {by virtue of the size rule, with h =

<pop.push(3).push(2)>}

1 + stack(init.pop.push(3).push(2).size)

= {by virtue of the size rule, with h =

<pop.push(3)>}

1 + 1 + stack(init.pop.push(3). size)

= {by virtue of the size rule, with h = <pop>}

1 + 1 + 1 + stack(init.pop.size)

= {by virtue of the init-pop rule}

1 + 1 + 1 + stack(init.size)

= {by virtue of size axiom}

1 + 1 + 1 + 0

= {arithmetic}

= 3

2.4 Alneelain specification’s language

Backus Naur Form

Backus Naur Format (BNF) “is a formal

metalanguage for describing language syntax”

[7] [8]. BNF language Different from English

language because BNF is not open to any one

interpretations, and There is only one method to

read its description [7]. Table 2 blew list the

notation and their meaning [9].

Table 2: BNF Notation

BNF Notation Meaning

< > Non-terminal symbol

::= Defining symbol

| Alternative

[] Optional symbols

{ } Grouping

The following is the Alneelain main function

According to the mentioned notation.

<alneelain>::= <header>; <body>

endspecification

2.5 Alneelain specification language

according to the BNF

The following is Stack specification language as

example.

specification Stack;

 constant

x = 5;

type

 itemtype : char;

input
vop top: itemtype ,

vop size: integer ,

vop empty: boolean

oop init, pop, push(char)

endinput;

output

 char ^ Boolean ^ integer ^ error

endoutput;

variable

 a: char ,

 h: inputstar ,

 hprime: inputstar ,

 hplus: inputplus ;

axioms

 axiom topAxiom:

 Stack(init.top) = error &

Stack(init.h.push(a).top) = a ,

 axiom sizeAxiom:

Stack(init.size) = 0,

 axiom emptyAxiom:

Stack(init.empty)=true &

Stack(init.push(a).empty)=

false

endaxioms;

rules

 rule initRule:

Stack(h.init.hprime)=Stack(init

. hprime) ,

 rule initpopRule:

Stack(init.pop.h) =

Stack(init.h) ,

 rule pushpopRule:

Stack(init.h.push(a).pop.hplus)

= Stack(init.h.hplus) ,

 rule sizeRule:

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

Volume 46, Issue 01, Quarter 04 (2017)

An Indexed, Referred and Impact Factor Journal

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

23

Stack(init.h.push(a).size) =1+

Stack(init.h.size) ,

 rule emptyRule:

Stack(init.h.push(a).hprime.

empty)=>

Stack(init.h.hprime.empty)&

Stack(init.h.empty) =>

Stack(init.h.pop.empty) ,

 rule vopRule:

Stack(init.h.top.hplus)=Stack

(init.h.hplus) &

Stack(init.h.size.hplus)=Stack

(init.h.hplus) &

Stack(init.h.empty.hplus)=Stack(init.h.

hplus)

 endrules;

endspecification

2.6 Writing Lexical Analyzer

Lexical analysis is the first phase of a compiler

construction stages. Also called a lexical scanner

because, it scans the input string without

backtracking (i.e. by reading each symbol once

and processing it correctly) [9]. Lexical analysis

attempts to isolate a lexical token. Lexical token

“is a string of input characters which is taken as

a unit and passed on to the next phase of

compilation” [2]. The following Table ‎3

illustrates the tokens.

Table 3: List of Tokens

Token type Tokens

Keywords endspecification,

specification, constant,

type, input, endinput, vop,

oop, output, endoutput,

variable, axioms,

endaxioms, axiom, rules,

endrules, rule.
Special characters , ، . ، ; ، (،) ، : ، ^ ،

& ، { ، } ، -

Operators = ، + ، =>

Relation

operators

> ، < ، >= ، <=

Digits 0-9

Identifiers [a-z A-Z][a-z A-Z]*

2.7 Writing Syntax Checker

The syntax analysis phase is often called the

parser. The input to this phase consists of a

stream of tokens produce by the lexical analysis

phase. Then the tokens checked for proper

syntax, i.e. the compiler checks to make sure the

statements and expressions are correctly formed.

When the compiler encounters such an error, it

should put out an informative message for the

user [2] [3]. The method used for implementing

the parser is Recursive Descent parsers, in this

method, the parser written using a procedure-

oriented language, such as Pascal or C. A

function is written for each nonterminal in the

grammar. The purpose of this function is to scan

a portion of the input string until an example of

that nonterminal has been read. By an example

of a nonterminal, we mean a string of terminals

or input symbols which can be derived from that

nonterminal. This is done by using the first

terminal symbol in each rule to decide which

rule to apply. The function then handles each

succeeding symbol in the rule; it handles

nonterminals by calling the corresponding

functions, and it handles terminals by reading

another input symbol [2] [3].

The pseudo code for syntax checker main

function is looks like:

// <alneelain> ::= <header> ; <body>

endspecification

FUNCTION alneelain()

{

 SET diagnosis=true

 FUNCTION header()

 FUNCTION checktoken(semicolon)

 FUNCTION body()

 FUNCTION checktoken (endspecification)

 IF (diagnosis = true)

 PRINT “Syntactically correct”

 ELSE

 PRINT “Syntactically incorrect”

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

Volume 46, Issue 01, Quarter 04 (2017)

An Indexed, Referred and Impact Factor Journal

ISSN: 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

24

3. The User Interface

Figure 2: Checking Stack Specification

The Alneelain Specification Language allows

user to create a file that contains a specification

of any abstract data type. Figure 2 shows

Alneelain specification language interface. As

illustration, If the user had the specification file

saved in specific folder, he/she can loads it from

that folder throw open menu, or he/she can add

new file and write the specification. The

specification is then executed by clicking on

CheckSpec. The Alneelain Specification

Language results is a message shows if the ADT

specification is correct by typing “Syntactically

correct”, or gives a detailed message of the place

of error if it is Syntactically incorrect as in

Error! Reference source not found..

4. Conclusions

This paper discusses the design of a new

specification language based on axiomatic

Specification called Alneelain. It shows the steps

of designing Alneelain specification language.

From defining ADT’s requirements, then

specifying this requirements using axiomatic

specification, and after that shows how to

validate the ADT’s specification, then using

BNF notation to describe the syntax of the

specification. The last step the syntax checker

checks the tokens which scanned from the lexical

analyzer for proper syntax. Then according to

this language the user can check his specification

if it is syntactically correct or not.

Acknowledgments

We would like to express our deep gratitude to

our supervisor Prof. Ali Mili For his persistent

constant guidance and wise counsel. Also, we

appreciate the assistance offered to us by Mr.

Mugtaba Ali.

References

[1] Noureddine, Bourdriga; Mili, Ali; Zalila, R;

Mili, Fatma;, "Relational model for the

specification of data types," computer

languages, vol. 17, no. 2, pp. 101-131, 1992.

[2] Seth D. Bergmann, Compiler Design:

Theory, Tools, and Examples C/C++ Edition,

2010.

[3] Aho, Alfred V.; Lam , Monica S.; Sethi,

Ravi; Ullman, Jeffrey D.;, compiler

principles techniques and tools, 2nd ed.:

Addison wesley, 2007.

[4] Mili, Ali; Tchier, Fairouz, Software Testing:

Concepts and Operations: John Wiley &

Sons, 2015.

[5] Michael S. Jenkins, Abstract Data Types in

Java: McGraw-Hill School Education Group,

1997.

[6] Tchier, Fairouz; Rabai, Latifa Ben Arfa; Mili,

Ali, "Putting Engineering into Software

Engineering: Upholding Software

Engineering Principles in the Classroom,"

Computers in Human Behavior, vol. 48, pp.

245-254, 2015.

[7] Kent D. Lee, Programming Languages/ an

active learning approach: Springer US, 2008.

[8] Fischer, Charles N; LeBlanc, Richard J;

Cytron, Ronald K;, Crafting a compiler.:

Addison-Wesley, 2009.

[9] Hopcroft, John E.; Motwani, Rajeev; Ullman,

Jeffrey D., Introduction to Automata Theory,

Languages, and Computation, 3rd ed.:

Pearson, 2006.

