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Abstract 
The specifications studied so far are adequate for 

specifying programs that take an input and map it onto 

an output. However, they inadequate to represent 

programs whose response depends not only on their 

input, but on their internal state. So for specifications 

should have two key attributes: formality and 

abstraction. Axiomatic representation represents the 

relation of a specification by means of an inductive 

notation to achieve simplicity, formality, and 

abstraction. This notation includes Axioms and Rules. 

This paper represents Alneelain specification language 

that checks the syntax of Abstract Data Types 

specification based on Axiomatic representation. 

Keywords: Alneelain Specification Language, 

Axiomatic Specification, Abstract Data Types. 

1. Introduction 

“The specification of a software product is a 

description of the functional requirements that 

the product must satisfy”. The word 

Specification refers to both a process and a 

product. As a product, the specification plays 

two key roles: first, specification is the contract 

that binds the user requirements and the 

designer. Second, it is the primary working 

document for the designer. As a process, the 

specification takes place in two steps: the 

specification generation step, when the 

specification is progressively constructed from 

the user requirements; the specification 

validation step, when the specification is 

matched against redundant requirements data 

elicited from the user [1]. Whereas specifications 

studied so far are adequate for specifying 

programs that take an input and map it onto an 

output, they are inadequate to represent programs 

whose response depends not only on their input, 

but on their internal state; the subject of this 

section is to explore ways to specify such 

systems. 

This paper will discuss how to build Alneelain 

compiler which checks the syntax of Abstract 

Data Types ADT Specification. A Compiler “is a 

program that can read a program in one language 

(the source language) and translate it into an 

equivalent program in another language (the 

target language)” [2] [3]. Compiler important 

role is to report any errors in the source program 

that it detects during the translation process [3]. 

This work is part of a global project, where my 

colleague Abdelrasoul Yahia works on 

specifications generation and validation, and my 

colleague Nahid Ahmed works on specification 

verification and my work is on specification 

testing, and can be used as an educational tool in 

an integrated programming environment to teach 

students how to define and validate a formal 

specification, verify and test them against the 

specifications. 
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2. Checking Alneelain specification 

language  

Alneelain is Specification Language that 

represents the relation of a specification by 

means of an inductive notation, with induction 

on the structure of the input history. Figure ‎1 

blew illustrates the steps of checking Alneelain 

Specification Language, for abstract data types 

and will take stack as example. 

 

 
 

Figure 1: Checking Alneelain specification 

language 

 

2.1 Defining ADT’s Requirements 

A stack is a data type that is used to store items 

(through operation push()) and to remove them 

in reverse order (through operation pop()). Then 

returns the most recently stored item that has not 

been removed (through operation top()), 

operation size() returns the number of stored 

items and operation empty() tells whether the 

stack has any items stored; and finally operation 

init() reinitializes the stack to an initial situation 

[4] [5].   

The specification of abstract data types 

represented by means of three attributes: 

• An input space, say X that represents 

the symbols that may be fed into the ADT as 

inputs.  For a stack ADT, for example, these 

would be: 

X = {init, pop, top, size, empty}  {push} 

  itemtype. 

From this set, we build set H of sequences 

of elements of X, and we refer to H as the set of 

input histories, or input sequences. 

• An output space, which represents the 

set of symbols that the ADT returns on output.  

For the stack ADT, this would be: 

Y = itemtype  integer  Boolean  

{error}. 

• A relation (often a function) from H to 

Y, which associates an output for each input 

sequence.  For the stack ADT, this relation 

would include pairs such as: 

Stack(init.push(a).push(b).top.push(c).pop.top)  

= b 

Stack(init.pop.push(a).pop.push(a).pop.push(a) 

.size) = 1 

2.2 Specifying ADT’s using Axiomatic 

Specification 

In order to represent specifications in closed 

form, we use an axiomatic notation that includes: 

 Axioms, which represent the behavior of the 

ADT for elementary input sequences.  As an 

example, consider the following axiom for 

the stack specification: 

1. Top axioms. 

a. stack(init.top) = error. 

b. stack(init.h.push(a).top) = a. 

2. Size axiom. 

a. stack(init.size) = 0. 

3. Empty axioms. 

a. stack(init.empty)=true. 

b. stack(init.push(a).empty)=false. 

 Rules, which define the behavior of the ADT 

for complex input sequences as a function of 

their behavior for simpler input sequences.  
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As an example, consider the following rule 

for the stack specification: 

1. Init rule: 

stack(h.init.h’)=stack(init.h’). 

Init reinitializes the stack state: even if 

there a history h prior to init or not. 

2. Init Pop rule: 

stack(init.pop.h) = stack(init.h). 

Pop has no impact on an empty stack.  

3. Push pop rule: 

stack(init.h.push(a).pop.h+) = 

stack(init.h.h+). 

A pop operation cancels the push before it.  

4. Size rule: 

stack(init.h.push(a).size)=1+stack(init.h.size) 

Push operation raises the size of the stack by 

1 because the stack size is not restricted. 

5. Empty rules 

a. stack(init.h.push(a).h’.empty)═> 

stack(init.h.h’.empty). 

If, despite having operation push(a) in 

its history, the stack is empty, then a 

fortiori it would empty without push(a). 

b. stack(init.h.empty)═> 

stack(init.h.pop.empty). 

If the stack is empty, then a fortiori it 

would be empty if an extra pop 

operation was performed in its past 

history. 

6. V-operation rules 

a. stack(init.h.top.h+)=stack(init.h.h+) 

b. stack(init.h.size.h+)=stack(init.h. 

h+) 

c. stack(init.h.empty.h+)= 

stack(init.h.h+). 

V-operations have no impact on the 

future behavior of the stack. 

Where h is an arbitrary input history and h+ is an 

arbitrary non null input history. 

2.3 Validating ADT’s Specification 

It is important to validate specifications for 

completeness and minimality, and to invest the 

necessary resources to this effect before 

proceeding with subsequent phases of the 

software lifecycle. The only way to ensure a 

measure of confidence in the validation of the 

specification is to separate the team that 

generates the specification from the team that 

validates it. To this effect, the study proposes the 

following two-team, two-phase approach [4] [6] 

as in table 1 blew 

 
Table 1: Validation Approach 

       Activity      

Phase     

Specification 

Generation 

Specification 

Validation 

Specification 

Generation  

Generating the 

Specification 

from sources of 

requirements  

Generating 

validation data 

from the same 

sources of 

requirements  

Specification 

Validation  

Updating the 

specification 

according to 

feedback from 

the validation 

team  

Testing the 

specification 

against the 

validation data 

generated 

above  

 
For the sake of simplicity, this work focuses 

solely on completeness. And while writing these 

specifications, an independent verification and 

validation team is generating formulas of the 

form 

stack(h) = y 

For different values of h and y, on the grounds 

that whatever the team write in our specification 

should logically imply these statements. Then 

the validation step consists in checking that the 

proposed formulas can be inferred from the 

axioms and rules of our specification. If they do, 

then the researchers can conclude that our 

specification is complete with respect to the 

proposed formulas; if not, then he/she needs to 

check with the verification and validation team 

to see whether our specification our specification 

is incomplete, or perhaps the validation data is 

erroneous. 

For the sake of illustration, the researchers check 

whether our specification is valid with respect to 

the formulas written in section 2.1 as sample 

input /output pairs of our stack specification. 

 V1: stack(pop.init.top.pop.push(a).size. 

push(b).top.pop.push(c).top.pop.size.top)=a  

 V2: stack(push(2).init.init.pop.push(3).top 

.size.push(2).push(5).top.pop.push(3). 

size)=3 

For V1, one find: 

= {by virtue of the init rule} 

stack(init.top.pop.push(a).size.push(b).top.pop.p

ush(c).top.pop.size.top) 

= {by virtue of the V-op rules} 
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stack(init.pop.push(a).push(b).pop.push(c).pop.t

op) 

= {by virtue of the push-pop rule, applied twice} 

stack(init.pop.push(a).top) 

= {by virtue of the second top axiom, with h = < 

pop >} 

= a 

For V2, one find: 

= {by virtue of the init rule} 

stack(init.pop.push(3).top.size.push(2).push(5).to

p.pop.push(3).size) 

= {by virtue of the V-op rules} 

stack(init.pop.push(3).push(2).push(5). 

pop.push(3).size) 

= {by virtue of the push-pop rule} 

stack(init.pop.push(3).push(2). push(3).size) 

= {by virtue of the size rule, with h = 

<pop.push(3).push(2)>} 

1 + stack(init.pop.push(3).push(2).size) 

= {by virtue of the size rule, with h = 

<pop.push(3)>} 

1 + 1 + stack(init.pop.push(3). size) 

= {by virtue of the size rule, with h = <pop>} 

1 + 1 + 1 + stack(init.pop.size) 

= {by virtue of the init-pop rule} 

1 + 1 + 1 + stack(init.size) 

= {by virtue of size axiom} 

1 + 1 + 1 + 0 

= {arithmetic} 

= 3 

2.4 Alneelain specification’s language 

Backus Naur Form 

Backus Naur Format (BNF) “is a formal 

metalanguage for describing language syntax” 

[7] [8].  BNF language Different from English 

language because BNF is not open to any one 

interpretations, and There is only one method to 

read its description [7]. Table 2 blew list the 

notation and their meaning [9]. 

 

Table 2: BNF Notation 

BNF Notation Meaning 

<      > Non-terminal symbol 

::= Defining symbol 

| Alternative 

[      ] Optional symbols 

{      } Grouping 

 

The following is the Alneelain main function 

According to the mentioned notation. 

<alneelain>::= <header>; <body> 

endspecification  

2.5 Alneelain specification language 

according to the BNF 

The following is Stack specification language as 

example. 

specification Stack; 

   constant  

x = 5; 

type  

          itemtype : char; 

input 
vop top: itemtype , 

vop size: integer , 

vop empty: boolean 

oop init, pop, push(char) 

endinput; 

output  

      char  ^  Boolean  ^  integer ^  error 

endoutput; 

variable 

        a: char , 

                     h: inputstar , 

                     hprime: inputstar , 

                     hplus: inputplus ; 

axioms 

    axiom topAxiom: 

 Stack(init.top) = error & 

Stack(init.h.push(a).top) = a , 

    axiom sizeAxiom: 

Stack(init.size) = 0, 

    axiom emptyAxiom:  

Stack(init.empty)=true & 

Stack(init.push(a).empty)= 

false 

endaxioms; 

rules 

       rule initRule: 

Stack(h.init.hprime)=Stack(init

. hprime) , 

       rule initpopRule: 

Stack(init.pop.h) = 

Stack(init.h) , 

       rule pushpopRule: 

Stack(init.h.push(a).pop.hplus) 

= Stack(init.h.hplus) , 

                    rule sizeRule: 
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Stack(init.h.push(a).size) =1+ 

Stack(init.h.size) , 

                    rule emptyRule: 

Stack(init.h.push(a).hprime.  

empty)=> 

Stack(init.h.hprime.empty)& 

Stack(init.h.empty) => 

Stack(init.h.pop.empty) , 

       rule vopRule: 

Stack(init.h.top.hplus)=Stack 

(init.h.hplus) & 

Stack(init.h.size.hplus)=Stack 

(init.h.hplus) & 

Stack(init.h.empty.hplus)=Stack(init.h. 

hplus)  

        endrules; 

endspecification 

2.6 Writing Lexical Analyzer 

Lexical analysis is the first phase of a compiler 

construction stages. Also called a lexical scanner 

because, it scans the input string without 

backtracking (i.e. by reading each symbol once 

and processing it correctly) [9]. Lexical analysis 

attempts to isolate a lexical token. Lexical token 

“is a string of input characters which is taken as 

a unit and passed on to the next phase of 

compilation” [2]. The following Table ‎3 

illustrates the tokens. 

 

Table 3: List of Tokens 

Token type Tokens 

Keywords endspecification, 

specification,  constant, 

type, input, endinput, vop, 

oop,   output, endoutput, 

variable, axioms, 

endaxioms, axiom,  rules, 

endrules, rule. 
Special characters ,  ،  .  ،  ;  ،  (  ،  )  ،  :  ، ^ ، 

& ، {  ،  }   ،  - 

Operators  = ، + ،   => 

Relation 

operators 

> ، < ، >= ، <= 

Digits  0-9 

Identifiers  [a-z A-Z][a-z A-Z]* 

 

2.7 Writing Syntax Checker 

The syntax analysis phase is often called the 

parser. The input to this phase consists of a 

stream of tokens produce by the lexical analysis 

phase. Then the tokens checked for proper 

syntax, i.e. the compiler checks to make sure the 

statements and expressions are correctly formed. 

When the compiler encounters such an error, it 

should put out an informative message for the 

user [2] [3]. The method used for implementing 

the parser is Recursive Descent parsers, in this 

method, the parser written using a procedure-

oriented language, such as Pascal or C. A 

function is written for each nonterminal in the 

grammar. The purpose of this function is to scan 

a portion of the input string until an example of 

that nonterminal has been read. By an example 

of a nonterminal, we mean a string of terminals 

or input symbols which can be derived from that 

nonterminal. This is done by using the first 

terminal symbol in each rule to decide which 

rule to apply. The function then handles each 

succeeding symbol in the rule; it handles 

nonterminals by calling the corresponding 

functions, and it handles terminals by reading 

another input symbol [2] [3]. 

The pseudo code for syntax checker main 

function is looks like: 

// <alneelain> ::=  <header> ; <body> 

endspecification 

 

FUNCTION alneelain() 

{ 

       SET diagnosis=true 

       FUNCTION header() 

       FUNCTION checktoken(semicolon) 

       FUNCTION body() 

       FUNCTION checktoken (endspecification) 

       IF (diagnosis = true)  

              PRINT “Syntactically correct” 

       ELSE  

              PRINT “Syntactically incorrect” 
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3. The User Interface 

 
Figure 2: Checking Stack Specification 

 

The Alneelain Specification Language allows 

user to create a file that contains a specification 

of any abstract data type. Figure 2 shows 

Alneelain specification language interface. As 

illustration, If the user had the specification file 

saved in specific folder, he/she can loads it from 

that folder throw open menu, or he/she can add 

new file and write the specification. The 

specification is then executed by clicking on 

CheckSpec. The Alneelain Specification 

Language results is a message shows if the ADT 

specification is correct by typing “Syntactically 

correct”, or gives a detailed message of the place 

of error if it is Syntactically incorrect as in  

Error! Reference source not found.. 

4. Conclusions 

This paper discusses the design of a new 

specification language based on axiomatic 

Specification called Alneelain. It shows the steps 

of designing Alneelain specification language. 

From defining ADT’s requirements, then 

specifying this requirements using axiomatic 

specification, and after that shows how to 

validate the ADT’s specification, then using 

BNF notation to describe the syntax of the 

specification. The last step the syntax checker 

checks the tokens which scanned from the lexical 

analyzer for proper syntax. Then according to 

this language the user can check his specification 

if it is syntactically correct or not. 
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